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Free vibrations of annular sector cantilever plates.
Part 1: out-of-plane motion
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Abstract

An analysis of the flexural vibrations of an annular sector plate is performed by means of a variational
approximation procedure. The plate is fixed on one straight edge and free on the other three. The annular
plate is assumed to have polar orthotropy in the analysis, although calculations are performed only for the
isotropic case. The problem is treated by first obtaining the exact solution for flexural waves in the annular
sector plate by satisfying the flexural equation of motion for the plate with the circumferential edges free. In
this exact solution, new radial functions are obtained from a Fr .obenius type expansion. The solution results
in a set of dispersion curves. A number of the resulting waves are used in what remains of the variational
equation, in which all conditions occur as natural conditions. Roots of the resulting transcendental
equation are calculated, which yield the eigensolutions and associated eigenfrequencies. The results
compare very well with those from FEM calculation, which shows that this procedure is very accurate. It
also provides an understanding in terms of the waves that make up the vibration, which is not provided by
any of the other methods.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The annular sector of a thin plate in flexure is an element used in many different geometric
configurations. On account of this, a rather large amount of work has been done on this problem
using a number of different approaches. In particular, Vogel and Skinner [1] analyzed the
transverse vibrations of a plate of uniform thickness in the shape of a circular ring. Ramakrishnan
and Kunukkasseril [2] solved the problem of an annular sector plate analytically for the case of
simply supported radial edges and any conditions on the circumferential edges. Harik and
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Molaghasemi [3] use one angular solution of the beam equation for each mode and solve the
remaining radial equation for the case when the radial and circumferential edges are either simply
supported or clamped in any combination. Liew and Lam [4] used the Rayleigh–Ritz method for
the treatment of the flexural vibration of a not necessarily circular annular sector plate with
various combinations of edge conditions. Also, several numerical or semi-numerical methods have
been developed to obtain approximate solutions for the sector plate. Guruswamy and Yang [5]
employed the finite element method to solve some dynamic problems of a sector plate using
Mindlin plate theory [6]. Xiang et al. [7] treated the moderately thick annular sector plate problem
using the Rayleigh–Ritz method. Leissa et al. [8] treated the free vibration problem of sectorial
and annular sectorial plates by means of the Ritz method with two sets of admissible functions in
order to accelerate the convergence. Guti!errez et al. [9] treated a vibration problem of a polar
orthotropic annular circular plate clamped or simply supported at the outer edge and free at the
inner edge using the Rayleigh–Ritz method.

In this work, the problem of the flexural vibrations of the annular sector plate is treated, in
which the plate is fixed on one radial edge, free on the other and free on both circumferential
edges. Since this problem cannot be solved exactly, some form of approximation procedure must
be employed. A variational approximation procedure is used, in which the flexural differential
equation and free conditions on the two circumferential edges are satisfied exactly and the
remaining free and fixed edge conditions on the radial edges are satisfied variationally. The
motivation for using this procedure is to satisfy as much of the problem exactly as possible,
while leaving the remainder to be satisfied variationally, using as small a number of the exact
solution functions as are needed to obtain the accuracy required. The procedure is semi-analytical
and provides some understanding through the values of the amplitudes of the exact solution
functions used, whereas FEM and the Rayleigh–Ritz method yield only the final numbers that
result. The treatment employs the variational equation for the classical theory of flexure of thin
plates, in which all conditions, i.e., those of both natural and constraint types, arise as natural
conditions in a form suitable for the application. The required variational equation is derived in
recent work [10] on the flexural vibrations of rectangular plates. Clearly, the equations taken from
Ref. [10] are in rectilinear co-ordinates and in this work the required equations must be
transformed to cylindrical co-ordinates. As in the previous work, the analysis proceeds by first
obtaining solutions satisfying the dynamic equation of flexure of thin plates in cylindrical
co-ordinates and the free conditions on the two circumferential edges exactly. In finding these
exact solutions, the radial differential equation arising is not expanded about the usual singular
point, but instead is expanded about a regular point, for which the required number of
independent radial power series solutions is always obtained [11]. In the particular problem
occurring here, the Fr .obenius form of expansion is used to obtain the independent power series
solution functions directly, which are then used to satisfy the circumferential edge conditions of
the intermediate problem exactly. The remaining conditions on the two radial edges and the
Kirchhoff corner conditions are then satisfied variationally.

The exact solution of the differential equation and free conditions on the two circumferential
edges yields dispersion curves. The dispersion curves for flexure of annular sector thin plates
presented in this work are exact and, to our knowledge, have not appeared in the literature before.
Up to eight of these solutions are taken, which are represented by the dispersion curves, in what
remains of the variational equation with all natural conditions to obtain a system of linear
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homogeneous algebraic equations, from which calculations are performed. Among other things,
the calculations clearly show the dependence of the natural frequencies on the radial dimension of
the plate for a given circumferential dimension. The results compare favorably with those from
P3/PATRAN [12].

2. Variational equation for the out-of-plane motion of a thin orthotropic plate

Consider a fixed Cartesian co-ordinate system xi ði ¼ 1; 2; 3Þ with the faces, of area S; at
x3 ¼ 7h: The axes x1 and x2 are co-ordinates lying in the middle plane, which intersect the right
prismatic boundary of the plate in a line path c: In Ref. [10], for the case of orthotropic symmetry,
the variational equation for both the extension and flexure of thin plates with all conditions,
i.e., both those of natural and constraint types, arising as natural conditions was obtained
from the appropriate three-dimensional variational equation [13]. Since Eq. (16) of Ref. [10]
shows that the extensional behavior uncouples from the flexural behavior, only the flexural
behavior is treated in this work and the extensional behavior is taken to vanish here. Accordingly,
from Eq. (16) of Ref. [10], the remaining flexural part of the variational equation of the plate
now becomesZ t

t0

dt

Z
S

dSfðtð0Þa3;a � 2rh .u
ð0Þ
3 Þdu

ð0Þ
3 þ ðtð1Þab;a � tð0Þ3b Þ du

ð1Þ
b g

�

þ
Z

cC

dsfu
ð0Þ
3 dðnat

ð0Þ
a3 Þ � u

ð0Þ
3;bdðnat

ð1Þ
ab Þg

�
Z

cN

dsfðnat
ð0Þ
a3 þ ðnat

ð1Þ
ab sbÞ;sÞdu

ð0Þ
3 � nat

ð1Þ
ab nbdu

ð0Þ
3;ngþ

Z
cN

dsðnat
ð1Þ
ab sbdu

ð0Þ
3 Þ;s

�
¼ 0; ð1aÞ

where indicial notation has been introduced and the conventions have been employed that a
comma followed by an index denotes partial differentiation with respect to the spatial co-ordinate
indicated by the index, a dot over a variable denotes partial differentiation with respect to time and
repeated tensor indices are to be summed, and as in Ref. [10] the convention that a; b can take the
values 1 and 2 but not 3 has been used. In this equation, the symbols S and r stand for the area and
the mass density of the plate, respectively, the subscripts n; s after commas represent the spatial
derivatives along the normal and tangential directions of the edges, respectively, cN stands for the
portion of edges on which traction is prescribed and cC represents the portion of edges on which
mechanical displacement is prescribed, na; sb denote the components of the unit outward normal
vector and the unit tangent vector to the curve of the edge in the counterclockwise direction,
respectively. In this equation, the nth order components of the stress-resultants are defined by

tðnÞij ¼
Z h

�h

tijx
n
3 dx3 ð1bÞ

and the nth order components of mechanical displacement are defined by the relations

ub ¼
X1

n¼0

xn
3u

ðnÞ
b ðxa; tÞ; u3 ¼

X2

n¼0

xn
3u

ðnÞ
3 ðxa; tÞ; ð1cÞ
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where tij and uj denote the components of the stress tensor and mechanical displacement vector,
respectively, and the time integration has been ignored since it is not needed in this work. Note that
all of the inhomogeneous terms in Eq. (1a) have been ignored since they are not required in this
treatment and that all of the assumptions of classical flexure discussed in Ref. [10] have been
employed.

Now, consider an annular sector plate and its co-ordinate system shown in Fig. 1(a). In the
figure, a cylindrical co-ordinate system with unit vectors #r; #y; #z is adopted to describe the
flexural motion of the plate. Fig. 1(b) represents an element of the annular sector plate showing
the relevant stress resultants required in the description of both flexure and extension of
the plate.

With the aid of the compressed matrix notation given in Table 1, in which the tensor indices
1, 2, 3 correspond to r; y; z for the cylindrical co-ordinate system, the linear constitutive equation
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Fig. 1. Three-dimensional view of an annular sector cantilever plate and its plan view of an element with stress

resultants and co-ordinates: (a) three-dimensional view of the annular sector cantilever plate, (b) an element of the

annular sector plate.

Table 1

Compressed matrix notation scheme

ij or kl 11 22 33 23 (or 32) 31 (or 13) 12 (or 21)

p or q 1 2 3 4 5 6
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can be expressed in the compact form [14]

tp ¼ cpqeq; ð2aÞ

where cpq9cijkl are the elastic stiffnesses, ekl denote the components of strain and

tp9tij;
eq9ekl for q ¼ 1; 2; 3;

eq92ekl for q ¼ 4; 5; 6:

(

For a polar orthotropic material, the constitutive relations can be represented in the matrix
form

t1

t2

t3

t4

t5

t6

2
6666666664

3
7777777775
¼

c11 c12 c13 0 0 0

c21 c22 c23 0 0 0

c31 c32 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c55 0

0 0 0 0 0 c66

2
6666666664

3
7777777775

e1

e2

e3

e4

e5

e6

2
6666666664

3
7777777775
: ð2bÞ

From the development of the thin plate equations in Section 2 of Ref. [10], the two-dimensional
constitutive equations for flexure in cylindrical co-ordinates can be obtained in the form

½ tð1Þ1 ; tð1Þ2 ; tð1Þ6
	 ¼ #Yð1;1Þ½ c
11e

ð1Þ
1 þ c
12e

ð1Þ
2 ; c
12e

ð1Þ
1 þ c
22e

ð1Þ
2 ; c66e

ð1Þ
6

	; ð3Þ

where

eð1Þ1 ¼ �
@2u

ð0Þ
3

@r2
; eð1Þ2 ¼ �

1

r

@u
ð0Þ
3

@r
�

1

r2

@2u
ð0Þ
3

@y2
; eð1Þ6 ¼ �

1

r

@2u
ð0Þ
3

@r@y
þ

1

r2

@u
ð0Þ
3

@y
ð4Þ

are the components of the two-dimensional plate strain in cylindrical co-ordinates for the flexural
behavior of the plate and the plate shearing strains eð0Þ3a have already been taken to vanish, which
results in Eq. (11) below, as required for classical flexure [15] and

c
11 ¼ c11 � c2
13=c33; c
12 ¼ c12 � c13c32=c33; c
22 ¼ c22 � c2

23=c33 ð5Þ

are the two-dimensional, or plate, polar orthotropic elastic constants.
The transformation of the variational equation (1a) to the cylindrical co-ordinate system

with the aid of the definition of the tensor indices 1, 2, 3 given above Eq. (2a) enables
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us to writeZ
S
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@tð0Þrz

@r
þ

1

r

@tð0Þyz

@y
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tð0Þyz þ
@tð1Þyr
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 !
dw � tð1Þyy d

1
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@w

@y

� �" #
y¼Y

dr

� ½tð1Þry dw	r¼Ro;y¼�Y
r¼Ri ;y¼�Y þ 2½tð1Þry dw	r¼Ro;y¼Y

r¼Ri;y¼Y ¼ 0; ð6Þ

where the time integration has been omitted since it is not needed in this work. For convenience,
the symbol u

ð0Þ
3 has been replaced by w; and the definitions

½f ðxÞ	x¼b
x¼a ¼ f ðbÞ � f ðaÞ; ½gðxÞ	x¼c ¼ gðcÞ ð7Þ

have already been employed.
Note that the last two terms in Eq. (6) were obtained by performing the last line integral around

cN in Eq. (1a) along the three free edges in the counterclockwise direction. The first of these in
Eq. (6) arises from the integration along the two opposite free edges evaluated at the wall and the
second and last of these came from the two jump conditions across the edges of discontinuity,
which are given by

�1nat
ð1Þ
ab sbdwUx1¼Ri ;x2¼Y � 1nat

ð1Þ
ab sbdwUx1¼Ro;x2¼Y; ð8Þ

and the jump notation

1pðxÞUx¼q for pþðqÞ � p�ðqÞ

has been introduced.
As discussed in Ref. [10], since in the formulation the constraint conditions were included by the

method of Lagrange multipliers, each variation is treated as independent, the coefficient of each
variation in Eq. (6) must vanish, which yields the differential equation and edge conditions.
However, since the resulting equations cannot be solved exactly, the intermediate problem of
satisfying the differential equation and edge conditions on the two circumferential edges exactly is
treated first. This solution yields dispersion curves giving frequency vs. wavenumber in the y
direction relations. In the next section, the dispersion relations for the flexural motion of the
annular sector plate are obtained.

At this point it should be noted that although we have provided in Fig. 1(b) a differential
element of the plate in cylindrical co-ordinates containing all the relevant stress resultants, we do
not derive the flexural and extensional differential equations from the element, but instead derive
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the differential equations systematically from the variational formulation. This is done because
although we solve much of the problem exactly, we ultimately leave a portion to be satisfied
variationally and, consequently, we feel that the discourse will be clearer if all the equations and
conditions that are satisfied exactly are obtained from the basic variational equation. Accordingly,
since all the variations dw; duð1Þ

r and du
ð1Þ
y in the surface integral in Eq. (6) are independent,

@tð0Þrz

@r
þ

1

r

@tð0Þyz

@y
þ tð0Þrz

 !
� 2rh .w ¼ 0; ð9aÞ

@tð1Þrr

@r
þ

1

r

@tð1Þry

@y
þ

ðtð1Þrr � tð1Þyy Þ
r

� tð0Þrz ¼ 0; ð9bÞ

@tð1Þry

@r
þ

1

r

@tð1Þyy

@y
þ 2tð1Þry

 !
� tð0Þyz ¼ 0 ð9cÞ

are obtained.
Since for the elementary flexure of thin plates the wavelength along the plate is much larger

than the thickness, the constitutive equations for tð0Þrz and tð0Þyz may be ignored and Eq. (9b) and
Eq. (9c) are to be used instead. The substitution of Eq. (9b) and Eq. (9c) into Eq. (9a) yields the
classical form of the differential equation for the flexural vibrations of a thin plate in cylindrical
co-ordinates in the form

@2tð1Þrr

@r2
þ

2

r

@2tð1Þry

@r@y
þ

1

r2

@2tð1Þyy

@y2
þ

2

r2

@tð1Þry

@y
þ

2

r

@tð1Þrr

@r
�

1

r

@tð1Þyy

@r
¼ 2rh .w: ð10Þ

Since Mindlin’s condition [15] of vanishing vertical plate shearing strains has already been
employed, there results

uð1Þ
r ¼ �

@w

@r
; u

ð1Þ
y ¼ �

1

r

@w

@y
; ð11Þ

which yields one differential equation, i.e., Eq. (10), in one variable w; i.e., the deflection. Since the
variations dw and dð@w=@rÞ along the traction-free circumferential edges are independent, the two
edge conditions

tð1Þrr ¼ 0; tð0Þrz þ
1

r

@tð1Þry

@y
¼ 0 ð12Þ

at r ¼ Ri and r ¼ R0 are obtained.
For the polar orthotropic material, the two-dimensional constitutive equations (3) and the

strain-displacement relations (4) yield the two-dimensional bending and twisting moment-
displacement gradient relations

tð1Þrr ¼ � #D
@2w

@r2
þ

#n
r

@w

@r
þ

1

r

@2w

@y2

� �� �
; ð13Þ

tð1Þyy ¼ � #D #n
@2w

@r2
þ

R

r

@w

@r
þ

1

r

@2w

@y2

� �� �
; ð14Þ
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tð1Þry ¼ � #DðT � #nÞ
@2

@r@y
w

r

� �
; ð15Þ

where

#D ¼ 2h3c
11=3; #n ¼ c
12=c
11; T ¼ ð2c66=c
11Þ þ #n; R ¼ c
22=c
11: ð16Þ

For a transversely isotropic material, where the r � y co-ordinates define the plane of isotropy,
the stress resultant-displacement gradient relations may readily be obtained from those for the
polar orthotropic material simply by setting T ¼ R ¼ 1:

The substitution of Eqs. (13)–(15) into Eqs. (9b) and (9c) yields the vertical shear-displacement
gradient relations in the form

tð0Þrz ¼ � #D
1

r

@

@r
r
@2w

@r2

� �
þ

T

r

@3

@y2@r

w

r

� �
�

R

r2

@w

@r
þ

1

r

@2w

@y2

� �� �
; ð17Þ

tð0Þyz ¼ � #D
@
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T

r

@2w

@r2
þ

R
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@w

@r
þ

1

r

@2w

@y2

� �� �
; ð18Þ

which, with Eq. (15), result in

tð0Þrz þ
1

r

@tð1Þry

@y
¼ � #D

@3w

@r3
�

R

r2

@w

@r
þ

1

r

@2w

@r2
�
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@2w
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@r@y2
�

1

r

@2w

@y2

� �� �
; ð19Þ

tð0Þyz þ
@tð1Þyr

@r
¼ � #D

R

r3

@3w

@y3
�

ð2T � RÞ
r2

@2w

@r@y
þ

2T

r

@3w

@r2@y
þ

1

r2

@w

@y

� ��

� #n
1

r

@3w

@r2@y
þ

2

r3

@w

@y
�

2

r2

@2w

@r@y

� ��
: ð20Þ

It should be noted that the effective flexural rigidity #D and Poisson’s ratio #n in the
two-dimensional stress resultant-displacement gradient relations with T ¼ R ¼ 1 become,
respectively, the flexural rigidity D and Poisson’s ratio n for an isotropic plate.

3. Solution of the differential equation and edge conditions on the two traction-free circumferential

faces

The substitution of Eqs. (13)–(15) into Eq. (10) yields the differential equation for the flexural
motion of the polar orthotropic plate in the form

1

r2

@

@r
r2 @

3w

@r3

� �
þ

2T

r2

@3

@r@y2

@w

@r
�

w

r

� �

þ
R

r

1

r3

@2

@y2

@2w

@y2
þ 2w

� �
�

@

@r

1

r

@w

@r

� �� �
þ #k2 .w ¼ 0; ð21Þ

where

#k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rh= #D

q
: ð22Þ
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From Eq. (12), the free edge conditions at r ¼ Ri;Ro are given by

tð1Þrr ¼ 0; tð0Þrz þ
1

r

@tð1Þry

@y
¼ 0: ð23Þ

As a solution of Eq. (21), write

wðr; y; tÞ ¼ Rf *wðrÞeiðot�xyÞg; ð24Þ

where i ¼
ffiffiffiffiffiffiffi
�1

p
; and the symbol Rfg signifies the real part of the argument and will be dropped

hereafter.
The substitution of Eq. (24) into the differential equation (21) yields

*w0000 þ
2

r
*w000 �

ð2Tx2 þ RÞ
r2

*w00 þ
ð2Tx2 þ RÞ

r3
*w0

þ
Rx2

r4
fx2 � 2ðT þ RÞg � #k2o2

� �
*w ¼ 0; ð25Þ

where the superscript prime ð0Þ means the derivative with respect to r: A new series representation
of the solutions of Eq. (25) is now obtained in this work. Since the existence of the singular point
at r ¼ 0 in Eq. (25) causes numerous convergence problems in the series solutions of Eq. (25),
series solutions are obtained about a point other than r ¼ 0; for which it is known [11] that
expansion about a regular point of the fourth order differential equation (25) with variable
coefficients yields four independent exact power series solutions about that point, which are well
behaved in the region of interest. In particular, the point r0 in the center of the annulus is
particularly convenient for use in this work.

For the purpose of calculation, it is convenient to introduce dimensionless quantities, which are
defined by

%r ¼ pr=ð2bÞ; %r0 ¼ pr0=ð2bÞ; *r ¼ %r � %r0; ð26Þ

%k ¼ #k %oð2b=pÞ2; %O ¼ o= %o; t ¼ %ot; ð27Þ

where

b ¼
Ro � Ri

2
; %o ¼

p
2b

ffiffiffiffiffiffi
c66

r

r
: ð28Þ

Eq. (25) now takes the dimensionless form

ð*r þ %r0Þ
4 *w0000 þ 2ð*r þ %r0Þ

3 *w000 � ð*r þ %r0Þ
2ð2Tx2 þ RÞ *w00 þ ð*r þ %r0Þð2Tx2 þ RÞ *w0

þ ½Rx2fx2 � 2ðT þ RÞg � ð*r þ %r0Þ
4
%k2 %O2	 *w ¼ 0; ð29Þ

where the superscript prime ð0Þ means the derivative with respect to dimensionless radius *r:
Four independent solutions of Eq. (29) are now sought in order to satisfy the four edge

conditions given in Eq. (23) along with the substitution of Eqs. (13), (15) and (17). The
most convenient way of obtaining the four independent solutions is to introduce the Fr .obenius
form [16]

*wð*rÞ ¼
XN
m¼0

%am *r
lþm; ð30Þ
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where the %am represent the mth coefficients of *rlþm and l represents characteristic numbers to be
determined. Note that in the above equation, the function *wðrÞ was directly replaced by a new
function *wð*rÞ; which, for corresponding points r and *r have the same values as the former
function, and for the sake of simplicity are denoted by the same symbols.

The insertion of Eq. (30) in Eq. (29) and the collection of the coefficients of like powers of *r
yields the recursion relations for all the solutions, which are much too cumbersome to include.
The coefficient of *rl�4; which is the lowest power term, yields the indicial equation in the form

%r
4
0 %a0lðl� 1Þðl� 2Þðl� 3Þ ¼ 0: ð31Þ

Clearly, Eq. (31) guarantees the existence of four independent solutions in the form of power
series for %a0a0: The solutions are denoted by lðqÞ ¼ q � 1; q ¼ 1;y; 4: Consequently, four
independent solutions are obtained, which may be written in the form

Gqð*r; xÞ ¼
XM
m¼0

%aðqÞm ðxÞ *rlðqÞþm; q ¼ 1;y; 4; ð32Þ

where the %aðqÞm ðma0Þ are determined in terms of %aðqÞ0 ¼ 1 from the recursion relations and

%aðqÞm ¼ %amðlðqÞÞ ð33Þ

and M is an integer large enough to make the four series solutions converge in the region of
interest.

With the aid of Eqs. (13) and (19), and the introduction of the dimensionless variables defined
in Eq. (26), it is found that the four edge conditions in Eq. (23) may be written in the form

ð*r þ %r0Þ
2 *w00 þ #nfð*r þ %r0Þ *w0 � x2 *wg ¼ 0; at *r ¼ 7p=2; ð34Þ

ð*r þ %r0Þfð*r þ %r0Þ
2 *w000 þ ð*r þ %r0Þ *w00 � R *w0g

þ x2 ð2T þ R � #nÞ *w � ð2T � #nÞð*r þ %r0Þ *w0� �
¼ 0; at *r ¼ 7p=2: ð35Þ

In accordance with the foregoing, as a solution of Eqs. (34) and (35), take

*wð*r; xÞ ¼
X4

q¼1

AqGq: ð36Þ

The substitution of Eq. (36) into Eqs. (34) and (35) yields four homogeneous equations with
four unknowns Aq; which can be written in the form

X4

q¼1

½½ð*r þ %r0Þ
2G00

q þ #nfð*r þ %r0ÞG0
q � x2Gqg	Aq	 ¼ 0; at *r ¼ 7p=2; ð37Þ

X4

q¼1

½½ð*r þ %r0Þfð*r þ %r0Þ
2G000

q þ ð*r þ %r0ÞG00
q � RG0

qg

þ x2fð2T þ R � #nÞGq � ð2T � #nÞð*r þ %r0ÞG0
qgAq	 ¼ 0; at *r ¼ 7p=2; ð38Þ
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which result in X4

q¼1

LpqAq ¼ 0; p ¼ 1;y; 4; ð39Þ

where p ¼ 1; 2 refers to the two edge conditions in Eq. (37) and p ¼ 3; 4 refers to the two edge
conditions in Eq. (38). Clearly, in matrix notation, Eq. (39) may be written in the form

LA ¼ 0: ð40Þ

The vanishing of the determinant of matrix L gives the dispersion relations, which connect
the y-directional wavenumber x to the circular frequency %O; and the amplitude ratios for any
solution point on the dispersion curves may be obtained from any three of the consistent
homogeneous equations in Eq. (40). It should be noted that the waves of the plate are asymmetric
in the annular case.

The starting points of the dispersion curves can be easily calculated by letting x ¼ 0 in Eq. (25)
and the two free boundary conditions in Eqs. (34) and (35). In that case, the governing differential
equation (25) reduces to the form

1

r2

@

@r
r2 @

3 *w

@r3

� �
�

R

r

@

@r

1

r

@ *w

@r

� �
� #k2o2 *w ¼ 0: ð41Þ

Note that R ¼ T ¼ 1 for the material with hexagonal symmetry, and even for that case, four
independent solutions are always obtained from the fourth order differential equation in Eq. (29),
which insures the satisfaction of the four circumferential edge conditions in Eqs. (34) and (35).

4. Variational approximation

Since the solution function (36) satisfies the differential equation (29) and the edge conditions
(34) and (35) exactly, all that remains in the variational equation (6) is

�
Z Ro

Ri

tð0Þyz þ
@tð1Þyr

@r

 !
dw � tð1Þyy d

1

r

@w

@y

� �" #
y¼Y

þ wdtð0Þyz �
@w

@r
dtð1Þry

� �
y¼�Y

" #
dr

� ½tð1Þry dw	r¼Ro;y¼�Y
r¼Ri ;y¼�Y þ 2½tð1Þry dw	r¼Ro;y¼Y

r¼Ri ;y¼Y ¼ 0: ð42Þ

The substitution of Eqs. (9c), (13)–(15) and (20) into Eq. (42) along with the dimensionless
quantities defined in Eqs. (26)–(28) yieldsZ p=2

�p=2

d*r
1

ð*r þ %r0Þ
@

@y
1

ð*r þ %r0Þ
2

2Tw þ R
@2w

@y2

� �
þ 2T

@2w

@*r2
�

ð2T � RÞ
ð*r þ %r0Þ

@w

@*r

� ���

�#n
2w

ð*r þ %r0Þ
2
þ ð*r þ %r0Þ

2 @

@*r

1

ð*r þ %r0Þ
2

@w

@*r

� �� �
dw

�
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�
R

ð*r þ %r0Þ
1

ð*r þ %r0Þ
2

@2w

@y2
þ

1

ð*r þ %r0Þ
@w

@*r

� ��
þ

#n
ð*r þ %r0Þ

@2w

@*r2

�
d

@w

@y

� ��
y¼Y

þ
Z p=2

�p=2

d*r wd
1

ð*r þ %r0Þ
@

@y
R

ð*r þ %r0Þ
2

@2w

@y2
þ

R

ð*r þ %r0Þ
@w

@*r
þ T

@2w

@*r2

� �� ��

�ðT � #nÞ
@w

@*r
d

1

ð*r þ %r0Þ
@

@y
@w

@*r
�

w

ð*r þ %r0Þ

� �� ��
y¼�Y

þ ðT � #nÞ
@2

@*r@y
w

ð*r þ %r0Þ

� �� �*r¼p=2;y¼�Y

*r¼�p=2;y¼�Y
�2ðT � #nÞ

@2

@*r@y
w

ð*r þ %r0Þ

� �� �*r¼p=2;y¼Y

*r¼�p=2;y¼Y
¼ 0: ð43Þ

From Eqs. (24) and (36) when N dispersion curves are included it is clear that the solution
function can be written in the form

wð*r; y; tÞ ¼
XN

n¼1

X4

p¼1

X2

q¼1

Bnq %ApnGðnÞ
p sinfxnyþ ðq � 1Þp=2gei %Ot; ð44Þ

where

GðnÞ
p ¼ GpðxnÞ; %Apn ¼ %ApðxnÞ: ð45Þ

Note that for a complex component in Bnq; its complex conjugate should also be included.
The introduction of the solution function (44) into Eq. (43) yields a homogeneous linear

algebraic system consisting of 2N equations with 2N unknowns, which may be written in the
matrix form

KX ¼ 0; ð46Þ

where K is a 2N � 2N matrix and X is a 2N unknown column vector with the relation

Bnq ¼ X2ðn�1Þþq: ð47Þ

The vanishing of the determinant of K yields the transcendental characteristic equation for the
annular sector cantilever plate and the amplitude ratios from any 2N � 1 of the consistent
equations. The amplitude ratios in Eq. (47) along with the solution function (44) give the mode
shapes of the annular sector plate.

5. Discussion of results

The calculation was performed using Maple [17] with quadruple precision and 20 significant
digits, with which the branches having large imaginary parts of the wavenumbers can be handled
with sufficient accuracy. Even though all the equations are derived for a polar orthotropic
material,1 the numerical computation was performed for a material with hexagonal symmetry in
which the symmetry axis is normal to the plane of the plate, so that T ¼ R ¼ 1: Since the material
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future work.

J. Seok, H.F. Tiersten / Journal of Sound and Vibration 271 (2004) 757–772768



is transversely isotropic, only the effective Poisson’s ratio and the geometry have an influence on
the results. In the calculation, the effective Poisson’s ratio #n ¼ 0:35 was used. Since the dispersion
curves in the proper wavenumber range are required before the eigenmodes given in Section 4 can
be calculated, the dispersion curves naturally were calculated first, and are shown in Fig. 2. Since
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Fig. 2. Dispersion curves of the annular sector cantilever plate (r0 ¼ ðRo þ RiÞ=2; b ¼ ðRo � RiÞ=2): (a) for r0=2b ¼ 5=4;
(b) for r0=ð2bÞ ¼ 5=3; (c) for r0=ð2bÞ ¼ 5=2:
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two dimensions are required to locate the circumferential portions of the annular sector plate, the
dispersion curves depend on a dimensional ratio in addition to Poisson’s ratio. The figure shows
the dispersion relations for the three values r0=ð2bÞ ¼ 5=4; 5=3 and 5=2; which are needed for our
further calculations. In this figure, the dimensionless frequency %k %O is plotted against RðxÞ and
IðxÞ over a range that includes the first three imaginary (or complex) branches near %O ¼ 0: Here,
RðxÞ and IðxÞ represent real and imaginary, respectively. Note that a complex branch depicted in
Fig. 2 always represents two branches since its complex conjugate is also a branch. Therefore,
whenever the number of branch is mentioned, a complex branches is counted twice.

The natural frequencies calculated for the first three modes of the cantilevered annular sector
plate using the treatment presented in this work are shown in Table 2 along with a comparison
with those obtained from the P3/PATRAN [12] calculation. For the FEM, around 800 to 1200
quadrilateral elements were employed depending on the geometry of the plate, and the subspace
iteration method [12] was also used. As can be seen from the table, the results are in very good
agreement, especially for large angles, and hence, for low frequencies. The limitation on the
number of the branches included naturally causes a reduction in accuracy, which should become
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Table 2

Dimensionless natural frequencies for the out-of-plane motion of the annular sector cantilever plate and their

comparison with P3/PATRAN [12] (r0 ¼ ðRo þ RiÞ=2; b ¼ ðRo � RiÞ=2; N ( )=Natural frequency %k %O (ND) of ( )); Cn

(ND)=N (current research) with n dispersion branches included P (ND)=N (P3/PATRAN)

Mode # 2Y (rad)

p=4 p=2 3p=4 p 5p=4 3p=2

r0=ð2bÞ ¼ 5=4

1 C6 0.34112 C6 0.09906 C6 0.05083 C6 0.03322 C6 0.02464 C6 0.01973

P 0.34839 P 0.10004 P 0.05108 P 0.03319 P 0.02472 P 0.01987

2 C6 1.01344 C6 0.34067 C6 0.14987 C6 0.07977 C6 0.04934 C6 0.03455

P 1.01691 P 0.34603 P 0.15254 P 0.08074 P 0.04967 P 0.03460

3 C8 1.71872 C6 0.60422 C6 0.37628 C6 0.24312 C6 0.15116 C6 0.09726

P 1.72310 P 0.60732 P 0.37663 P 0.24481 P 0.15207 P 0.09792

r0=ð2bÞ ¼ 5=3

1 C5 0.20117 C5 0.05575 C5 0.02799 C5 0.01805 C5 0.01331 C5 0.01066

P 0.20524 P 0.05614 P 0.02807 P 0.01801 P 0.01337 P 0.01069

2 C5 0.64877 C5 0.21193 C5 0.08981 C5 0.04667 C5 0.02839 C5 0.01960

P 0.65013 P 0.21450 P 0.09097 P 0.04714 P 0.02860 P 0.01960

3 C6 1.11117 C5 0.38847 C5 0.24359 C5 0.14794 C5 0.08912 C5 0.05629

P 1.11225 P 0.38929 P 0.24364 P 0.14830 P 0.08964 P 0.05654

r0=ð2bÞ ¼ 5=2

1 C5 0.09080 C5 0.02449 C5 0.01213 C5 0.00777 C5 0.00571 C5 0.00418

P 0.09180 C5 0.02466 P 0.01218 P 0.00777 P 0.00571 P 0.00417

2 C5 0.36684 C5 0.10487 C5 0.04212 C5 0.02138 C5 0.01281 C5 0.00875

P 0.36840 P 0.10593 P 0.04249 P 0.02154 P 0.01289 P 0.00877

3 C5 0.55557 C5 0.21910 C5 0.12916 C5 0.07045 C5 0.04120 C5 0.02562

P 0.55671 P 0.21951 P 0.12947 P 0.07062 P 0.04137 P 0.02572
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larger as the frequency gets higher. Of course, this accuracy can readily be improved simply by
including more branches.

Fig. 3 shows the first three mode shapes of the annular sector cantilever plate with various
angles between the two ends of the sector ð2YÞ and three dimensionless ratios r0=ð2bÞ:

References

[1] G.M. Vogel, D.W. Skinner, Natural frequencies of transversely vibrating uniform annular plates, Journal of

Applied Mechanics 32 (4) (1965) 926–931.

[2] R. Ramakrishnan, V.X. Kunukkasseril, Free vibration of annular sector plate, Journal of Sound and Vibration 30

(1) (1973) 127–129.

[3] I.E. Harik, H.R. Molaghasemi, Analytic solution to free vibration of sector plates, Journal of Engineering

Mechanics 115 (1989) 2709–2722.

[4] K.M. Liew, K.Y. Lam, On the use of 2-D orthogonal polynomials in the Rayleigh–Ritz method for flexural

vibration of annular sector plates of arbitrary shape, International Journal of Mechanical Sciences 35 (2) (1993)

129–139.

[5] P. Guruswamy, T.Y. Yang, A sector finite element for dynamic analysis of thick plates, Journal of Sound and

Vibration 62 (4) (1979) 505–516.

[6] R.D. Mindlin, An introduction to the mathematical theory of the vibration of elastic plates, US Army Signal

Corps Engineering Laboratory, Fort Monmouth, NJ, 1955, Sec. 5.06.

ARTICLE IN PRESS

Fig. 3. First six mode shapes for the out-of-plane motion of the annular sector cantilever plate ð1Þ;y; ð6Þ½
correspond to 2Y ¼ np=4; n ¼ 1;y; 6	: (a) first modes for r0=ð2bÞ ¼ 5=4; (b) second modes for r0=ð2bÞ ¼ 5=3; (c) third

modes for r0=ð2bÞ ¼ 5=2:

J. Seok, H.F. Tiersten / Journal of Sound and Vibration 271 (2004) 757–772 771



[7] Y. Xiang, K.M. Liew, S. Kitipornchai, Transverse vibration of thick annular sector plates, Journal of Engineering

Mechanics 119 (8) (1993) 1579–1597.

[8] A.W. Leissa, O.G. McGee, C.S. Huang, Vibrations of sectorial plates having corner stress singularities, Journal of

Applied Mechanics 60 (1993) 134–140.

[9] R.H. Guti!errez, P.A.A. Laura, D. F!elix, C. Pistonesi, Fundamental frequency of transverse vibration of circular,

annular plates of polar orthotropy, Journal of Sound and Vibration 230 (5) (2000) 1191–1195.

[10] Jongwon Seok, H.F. Tiersten, H.A. Scarton, Free vibrations of rectangular cantilever plates. Part 2: in-plane

motion, Journal of Sound and Vibration 271 (3–5) (2004) 773–787, this issue.

[11] P.M. Morse, H. Feshback, Methods of Theoretical Physics, McGraw-Hill, New York, 1953, Part I, pp. 530–531.

[12] P3/PATRANt User Manual Release 1.2, PDA Engineering-PATRAN Division, 1993.

[13] H.F. Tiersten, Linear Piezoelectric Plate Vibrations, Plenum Press, New York, 1969, Sec. 6.4 (6.44) without the

electrical terms and the integral over S(d), since it is for only one region.

[14] H.F. Tiersten, Linear Piezoelectric Plate Vibrations, Plenum Press, New York, 1969, Sec. 7.1.

[15] R.D. Mindlin, An introduction to the mathematical theory of the vibration of elastic plates, US Army Signal

Corps Engineering Laboratory, Fort Monmouth, NJ, 1955, Sec. 6.04.

[16] F.B. Hildebrand, Advanced Calculus for Applications, Prentice-Hall, Englewood Cliffs, NJ, 1976, Sec. 4.4.

[17] Maplet User Manual Release 5, Waterloo Maple Inc., 1997.

ARTICLE IN PRESS

J. Seok, H.F. Tiersten / Journal of Sound and Vibration 271 (2004) 757–772772

10.1016/S0022-460X(03)00365-1

	Free vibrations of annular sector cantilever plates. Part 1: out-of-plane motion
	Introduction
	Variational equation for the out-of-plane motion of a thin orthotropic plate
	Solution of the differential equation and edge conditions on the two traction-free circumferential faces
	Variational approximation
	Discussion of results
	References


